

Department Profile:

Established in 2009

Faculty: 23

Students Intake:

M.Sc. Physics: 35/year

B.Tech. Engineering Physics: 40/year

PhD (Experimental, Theoretical & Computational Physics ~10/year

DEPARTMENT OF PHYSICS

- UV LASER Coherent (COMPex Pro 50 F)
 - High pulse energy
 - Preset stabilized energy operation
 - Integrated, purgeable energy monitor
 - Increased static gas lifetime

UV LASER Coherent, COMPexPro 50 F

- Ellipsometer (Sopra GES -5E)
 - Used for real-time monitoring and speciation of Aerosol Black Carbon. It analyzes the aerosol by measuring the transmission of light through aerosol laden filter tape
 - Mapping functionality
 - Capable of measuring more complex structures such as multi-layers, interface roughness or inhomogeneous layers
 - Varied incidence angle

Ellipsometer, Sopra, GES -5E

Instrument Details

നാഷണൽ ഇൻസ്റ്റിറ്റ്യൂട്ട് ഓഫ് ടെക്കോളജി കാലിക്കറ്റ് राष्ट्रीय प्रौद्योगिकी संस्थान कालीकट NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

- Impedence measurement unit(IM6 ex Zahnerelektrik GnbH)
 - ultra low-noise potentiostat
 - widefrequency range DSS FRA
 - high CMRR precision U/I-amplifiers
 - high resolution differential ADCs

Impedence measurement unit, IM6 ex Zahner-elektrik GnbH

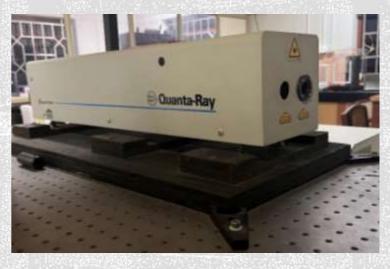
Inverted Microscope (Olympus IX-73)

Observation method:

- Brightfield
- Fluorescence (Ultraviolet Excitation)
- Fluorescence (Blue/Green Excitation)

Utilization:

Microscopic images of particle patterning and colloidal assembly



Olympus IX-73 Inverted Microscope

Instrument Details

- Nd:YAG Laser (Quanta Ray INDI-40-10 Spectra Physics)
 - High-pulse energy Nd:YAG lasers with dual-rod oscillators
 - Gold-coated elliptical pump chambers
 - Internal sealed beam paths
 - High-damage-threshold optics
 - Used for ablation, laser-induced fluorescence etc.

Spectra-Physics Quanta-Ray Nd:YAG Laser

- High Power Nd:YAG Laser (Minilite ML11)
 - Accessible harmonic generators
 - Integrated energy attenuator
 - Single YAG rod/flash lamp pump chamber
 - Invar resonator
 - Stable resonator design

High Power Nd:YAG Laser, Minilite, ML11

- HPC Server (Lenovo Think system)
 - 96 core processor (single node)

Instrument Details

HPC Server - Lenovo Think System

- UV-Visible Spectro-photometer (Shimadzu UV 2600 I)
 - Measures Slight Differences in Absorbance
 - Scalability to near-infrared measurement
 - Enables Compliance with ER/ES Regulations and Stronger Data Management

UV-Visible Spectro-photometer, Shimadzu UV 2600 i

- Differential Photocalorimetry Unit (Perkin Elmer)
 - Fast controlled scanning rates to 750°C/min
 - In-situ ballistic cooling to 2100°C/min
 - Fast data readout rates (100 points/second)

Applications:

- Characterization of materials
- Polymorph characterization
- Process studies
- Process simulation

Differential Scanning Calorimeter DSC 8500 (Perkin Elmer)

- Aethalometer (AE33 Magee Scientific)
 - Used for real-time monitoring and speciation of Aerosol Black Carbon. It analyzes the aerosol by measuring the transmission of light through aerosol laden filter tape

Aethalometer AE33, Magee Scientific

- Photonic materials and devices Laboratory
 - Nanoscience and nanotechnology
 - Boron-based nanostructures
 - Luminescent carbon quantum dots
 - Low-dimensional carbon nanostructures for energy related applications

Photonic materials and devices

- Computational Materials Science Laboratory
 - Electronic Structure Theory Calculations (DFT)
 - Computational Modelling of Materials, Surfaces and interfaces, Electrochemical catalysts, Energy materials, Magnetism, Strongly correlated electrons
 - Model Hamiltonian based computations

Computational Materials Science Lab

- Optofluidics and Interface Science Laboratory
 - Optically-controlled particle patterning
 - Droplet microfluidics and dynamics
 - Liquid marbles
 - Soft matter physics
 - Marangoni effect

Optofluidics and Interface Sciences Lab

- Laser and Non Linear Optics Laboratory
 - Nonlinear Optics
 - Electron Spin Resonance
 - Photonic crystals

Laser and Non Linear Optics Lab

- Organic and Nanoelectronics Laboratory
 - Organic and Perovskite solar cells
 - Plasmonics for improving the performance of solar cells
 - Nanomaterials for energy applications, Organic bistable memory devices

Organic and Nanoelectronics Lab

- Applied Optics and Instrumentation Laboratory
 - Development of Instrumentation for Atmospheric, and Environmental monitoring using principles of Optics, Radiative transfer and aerosol forcing on Climate

Applied Optics and Instrumentation Lab

- Critical Phenomena Laboratory
 - Critical Point Phenomena (Quadruple Critical Point (QCP), Critical Inflection Point (CIP), critical crossover behaviour of binary, ternary and quaternary electrolytic systems)
 - Hydrodynamics of complex fluids

Critical Phenomena Lab

- Wet Chemistry Laboratory
 - Qualitative and quantitative analysis of chemical substances.
 - Chemical synthesis

Wet Chemistry Lab

- Raman Hall
 - Smart TV and audio capabilities.
 - Seating capacity: 60

Seminar Hall Details

Raman Hall

Please visit our website for more details:

https://old.nitc.ac.in/physics/